Théorème de Maschke

Dans ce développement, nous montrons le théorème de Maschke qui dit que toute représentation linéaire de degré non-nul est somme directe d'un nombre fini de représentations linéaires irréductibles.

Soit G un groupe fini de cardinal r. Tous les espaces vectoriels considérés ici sont de dimension finie.

[**ULM21**] p. 148

Lemme 1. Soit $\rho: G \to \operatorname{GL}(V)$ une représentation de G et soit W un sous-espace de V stable par $\rho(g)$ pour tout $g \in G$. Alors il existe un supplémentaire de W dans V stable par $\rho(g)$ pour tout $g \in G$.

Démonstration. Soit $p: V \rightarrow W$ une projection de V sur W. Formons la moyenne p_0 des transformés de p par les éléments de G:

$$p_0 = \frac{1}{r} \sum_{g \in G} \rho(g) p \rho(g)^{-1}$$

Puisque W est stable par $\rho(g)$ pour tout $g \in G$, on a $\operatorname{Im}(p_0) \subseteq W$.

D'autre part, si $x \in W$, on a $\rho(g)^{-1}(x) = \rho(g^{-1})(x) \in W$. D'où :

$$(p \circ \rho(g)^{-1})(x) = \rho(g)^{-1}(x) \Longrightarrow (\rho(g) \circ p \circ \rho(g)^{-1})(x) = x$$

D'où $p_0(x) = \frac{r}{r}x = x$. Donc $\text{Im}(p_0) = W$ et $p_0^2 = p_0$ ie. p_0 est le projecteur de V sur W parallèlement au supplémentaire $W_0 = \text{Ker}(p_0)$ de W.

Si l'on calcule $\rho(h)p_0\rho(h)^{-1}$, on trouve :

$$\rho(h)p_0\rho(h)^{-1} = \frac{1}{r}\sum_{g\in G}\rho(h)\rho(g)p\rho(g)^{-1}\rho(h)^{-1} = \frac{1}{r}\sum_{g\in G}\rho(hg)p\rho(hg)^{-1} = p_0$$

car $g \mapsto hg$ est une bijection de G dans G. Donc on a :

$$\rho(h)p_0 = p_0\rho(h)$$

Si maintenant $x \in W_0$, on a $p_0(x) = 0$. D'où $\forall g \in G$, $(p_0 \circ \rho(g))(x) = (\rho(g) \circ p_0)(x) = 0$ ie. $\rho(g)(x) \in W_0$, ce que l'on voulait.

Théorème 2 (Maschke). Toute représentation linéaire de degré non-nul est somme directe d'un nombre fini de représentations linéaires irréductibles.

Démonstration. Soit ρ : G → GL(V) une représentation linéaire de G. On raisonne par récurrence sur $n = \dim(V)$.

— Si n = 1: la représentation ρ est irréductible, donc le résultat est évident.

— <u>Supposons le résultat vrai à un rang $n \ge 1$ et montrons-le au rang n + 1.</u> Si ρ est irréductible, il n'y a rien à montrer. Dans le cas contraire, on note W le sous-espace de V laissé stable par $\rho(g)$ pour tout $g \in G$. Par le Lemme 1, il existe W_0 tel que $E = W \oplus W_0$ avec W_0 laissé stable par $\rho(g)$ pour tout $g \in G$. Par l'hypothèse de récurrence, $\rho_W : g \mapsto \rho(g)_{|W}$ et $\rho_{W_0} : g \mapsto \rho(g)_{|W_0}$ sont sommes directes de représentations irréductibles, et comme $\rho = \rho_W \oplus \rho_{W_0}$, on a le résultat.

Bibliographie

Théorie des groupes [ULM21]

Felix Ulmer. *Théorie des groupes. Cours et exercices.* 2e éd. Ellipses, 3 août 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13760-25304-theorie-des-groupes-2e-edition-9782340057241.html|.$