149 Déterminant. Exemples et applications.

Soient \mathbb{K} un corps commutatif et E un espace vectoriel de dimension finie n sur \mathbb{K} .

I - Généralités

1. Formes *n*-linéaires alternées et déterminant

Définition 1. Soient E_1, \ldots, E_p et F des espaces vectoriels sur \mathbb{K} et $f: E_1, \ldots, E_p \to F$.

- [**GOU21**] p. 140
- Si f est p-linéaire et si $E_1 = \cdots = E_p$ ainsi que $F = \mathbb{K}$, f est une **forme** p-**linéaire**. On note $\mathcal{L}_p(E,\mathbb{K})$ l'ensemble des formes p-linéaires sur E.
- Si de plus $f(x_1, ..., x_p) = 0$ dès que deux vecteurs parmi les x_i sont égaux, alors f est dite **alternée**.

Exemple 2. En reprenant les notations précédentes, pour p = 2, f est bilinéaire.

Proposition 3. $\mathcal{L}_p(E,\mathbb{K})$ est un espace vectoriel et, $\dim(\mathcal{L}_p(E,\mathbb{K})) = |\dim(E)|^p$.

Théorème 4. L'ensemble des formes p-linéaires alternées sur E est un \mathbb{K} -espace vectoriel de dimension 1. De plus, il existe une unique forme p-linéaire alternée f prenant la valeur 1 sur une base \mathscr{B} de E. On note $f = \det_{\mathscr{B}}$.

Définition 5. $\det_{\mathscr{B}}$ est l'application **déterminant** dans la base \mathscr{B} . En l'absence d'ambiguïté, on s'autorise à noter $\det = \det_{\mathscr{B}}$.

Proposition 6. Soit $\mathscr{B} = (e_1, \dots, e_n)$ une base de E. Si $x_1, \dots, x_n \in E$ ($\forall i \in [1, n]$, on peut écrire $x_i = \sum_{j=1}^n x_{i,j} e_j$), on a la formule $\det_{\mathscr{B}}(x_1, \dots, x_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n x_{i,\sigma(i)}$.

Proposition 7. Soit \mathscr{B} une base de E. Si \mathscr{B}' est une autre base de E, alors $\det_{\mathscr{B}'} = \det_{\mathscr{B}'}(\mathscr{B}) \det_{\mathscr{B}}$.

Théorème 8. Une famille de vecteurs est liée si et seulement si son déterminant est nul dans une base quelconque de E.

2. Déterminant d'un endomorphisme

Lemme 9. Soient $f \in \mathcal{L}(E)$ et $\mathcal{B} = (e_1, ..., e_n)$ une base de E. Le scalaire $\det_{\mathcal{B}}(f(e_1), ..., f(e_n))$ ne dépend pas de la base \mathcal{B} considérée.

Définition 10. Soient $f \in \mathcal{L}(E)$ et $\mathcal{B} = (e_1, ..., e_n)$ une base de E. On appelle **déterminant** de f le scalaire $\det_{\mathcal{B}}(f(e_1), ..., f(e_n))$. On le note $\det(f)$.

Proposition 11. Soient $f, g \in \mathcal{L}(E)$.

- (i) $det(f \circ g) = det(f) \times det(g)$.
- (ii) $det(id_e) = 1$.
- (iii) $f \in GL(E) \iff \det(f) \neq 0$. Dans ce cas, on a $\det(f^{-1}) = \det(f)^{-1}$.

3. Déterminant d'une matrice carrée

Définition 12. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle **déterminant** de A, le déterminant de ses vecteurs colonnes dans la base canonique de \mathbb{K}^n . On le note det(A).

Notation 13. Si $A = (a_{i,j})_{i,j \in [1,n]} \in \mathcal{M}_n(\mathbb{K})$, on note son déterminant sous la forme

$$\det(A) = \begin{vmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{vmatrix}$$

Exemple 14. $- \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc.$

$$- \begin{vmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ 1 & 5 & 1 \end{vmatrix} = 39.$$

Proposition 15. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (i) $det(A) = det(^tA)$.
- (ii) det(A) dépend linéairement des colonnes (resp. des lignes) de A.
- (iii) $\forall \lambda \in \mathbb{K}$, $\det(\lambda A) = \lambda^n \det(A)$.
- (iv) $det(A) \neq 0 \iff A \in GL_n(\mathbb{K}).$
- (v) Si A est la matrice de $f \in \mathcal{L}(E)$ dans une base, alors $\det(f) = \det(A)$.

[**GRI**] p. 104

[GOU21]

p. 142

- (vi) Si $B \in \mathcal{M}_n(\mathbb{K})$, det $(AB) = \det(A) \det(B)$.
- (vii) Deux matrices semblables ont le même déterminant.

II - Méthodes de calcul

1. Propriétés

Proposition 16. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (i) Si on effectue une permutation $\sigma \in S_n$ sur les colonnes ou les lignes de A, le déterminant est multiplié par $\varepsilon(\sigma)$ (la signature de σ).
- (ii) Si A est triangulaire, det(A) est le produit des éléments diagonaux de A.
- (iii) On ne change pas la valeur d'un déterminant en ajoutant à une colonne une combinaison linéaire des autres colonnes. Même chose sur les lignes.

Exemple 17.

$$\begin{vmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & m \end{vmatrix} = \begin{vmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & m+1 \end{vmatrix} = -2(m+1)$$

Proposition 18 (Déterminant par blocs). Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire par blocs, de la forme

$$M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$

alors det(M) = det(A) det(B).

2. Mineurs et cofacteurs

Définition 19. Soit $A = (a_{i,j})_{i,j \in [\![1,n]\!]} \in \mathcal{M}_n(\mathbb{K})$.

- Pour tout $i, j \in [1, n]$, on appelle **mineur** de l'élément $a_{i,j}$ le déterminant $\Delta_{i,j}$ de la matrice obtenue en supprimant la i-ième ligne et la j-ième colonne de A.
- Le scalaire $A_{i,j} = (-1)^{i+j} \Delta_{i,j}$ s'appelle le **cofacteur** de $a_{i,j}$.
- On appelle **mineurs principaux** de A les déterminants $\Delta_k = \det((a_{i,j})_{i,j \in [\![1,k]\!]})$ pour $k \in [\![1,n]\!]$.

Proposition 20. En reprenant les notations précédentes :

(i) Soit $j \in [1, n]$. On a $\det(A) = \sum_{i=1}^n a_{i,j} A_{i,j}$ (développement par rapport à la j-ième

colonne).

(ii) Soit $i \in [1, n]$. On a $\det(A) = \sum_{j=1}^{n} a_{i,j} A_{i,j}$ (développement par rapport à la i-ième ligne).

Exemple 21.

$$\begin{vmatrix} 6 & 0 & -6 \\ 0 & 2 & 7 \\ 0 & 2 & 3 \end{vmatrix} = 6 \begin{vmatrix} 2 & 7 \\ 2 & 3 \end{vmatrix} = 6(6 - 14) = -48$$

Définition 22. Soit $A \in \mathcal{M}_n(\mathbb{K})$. La matrice $(A_{i,j})_{i,j \in [\![1,n]\!]}$ des cofacteurs des éléments de A est appelée **comatrice** de A, et on la note com(A).

[**GOU21**] p. 143

Proposition 23. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On a :

$$A^t \operatorname{com}(A) = {}^t \operatorname{com}(A)A = \det(A)I_n$$

Corollaire 24. Soit $A \in GL_n(\mathbb{K})$. Alors,

$$A^{-1} = \frac{1}{\det(A)}^t \operatorname{com}(A)$$

Exemple 25. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{K})$. Alors,

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

3. Exemples classiques

Exemple 26 (Déterminant de Vandermonde). Soient $a_1, ..., a_n \in \mathbb{K}$. Alors

$$\begin{vmatrix} 1 & a_1 & \dots & a_1^{n-1} \\ 1 & a_2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \dots & a_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i)$$

Exemple 27 (Déterminant de Cauchy). Soient $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{K}$ tels que pour tout

p. 150

 $i, j \in [1, n], a_i + b_j \neq 0$. Alors

$$\det\left(\frac{1}{a_i + b_j}\right) = \frac{\prod_{1 \le i < j \le n} (a_j - a_i) \prod_{1 \le i < j \le n} (b_j - b_i)}{\prod_{i,j=1}^n (a_i + b_j)}$$

Exemple 28 (Déterminant circulant). Soient $a_1, \ldots, a_n \in \mathbb{C}$. On pose $\omega = e^{\frac{2i\pi}{n}}$. Alors

$$\begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_n \end{vmatrix} = \prod_{j=0}^{n-1} P(\omega^j)$$

où $P = \sum_{k=0}^{n-1} a_k X^k$.

III - Applications

1. Systèmes d'équations linéaires

On cherche à résoudre un système d'équations linéaires de la forme

p. 143

p. 153

$$AX = B \tag{S}$$

 $\operatorname{avec} A = (a_{i,j})_{\substack{i \in [\![1,p]\!] \\ j \in [\![1,q]\!]}} \operatorname{et} B = (b_i)_{\substack{i \in [\![1,p]\!]}} \in \mathbb{K}^p.$

Théorème 29 (Formules de Cramer). On se place dans le cas p=q=n. Alors, (S) admet une unique solution si et seulement si $\det(A) \neq 0$. Dans ce cas, elle est donnée par $X=(x_i)_{i \in [\![1,n]\!]}$ où

$$\forall i \in [1, n], x_i = \frac{\det(A_i)}{\det(A)}$$

avec A_i obtenue en remplaçant la i-ième colonne de A par B.

Lemme 30. Soit r = rang(A). Il existe un déterminant Δ d'ordre r extrait de A.

Définition 31. — Le déterminant Δ précédent est le **déterminant principal** de A.

- Les équations (resp. inconnues) dont les indices sont deux des lignes (resp. colonnes) de Δ s'appellent les **équations principales** (resp. **inconnues principales**).
- Si $\Delta = \det(a_{i,j})_{\substack{i \in I \\ j \in J}}$, on appelle **déterminants caractéristiques** les déterminants d'ordre r+1 de la forme

$$\begin{vmatrix} (a_{i,j})_{\substack{i \in I \\ j \in J}} & (b_i)_{\substack{i \in I \\ (a_{k,j})_{j \in J}}} & avec \ k \notin J.$$

Théorème 32 (Rouché-Fontené). Le système (S) admet des solutions si et seulement si p = r ou les p - r déterminants caractéristiques sont nuls. Le système est alors équivalent au système des équations principales. Les inconnues principales étant déterminées par un système de Cramer à l'aide des inconnues non principales.

Exemple 33. Si,

$$(S) \iff \begin{cases} x + 2y + z + t = 1 \\ x - z - t = 1 \\ -x + y + z + 2t = m \end{cases} \qquad m \in \mathbb{R}$$

on a rang(A) = 2, (S) admet des solutions si et seulement si m = -1, et

$$(S) \iff \begin{cases} x + 2y = 1 + z - t \\ x = 1 + z + t \end{cases} \iff \begin{cases} x = 1 + z + t \\ y = -t \end{cases}$$

2. En géométrie

a. Volume d'un parallélépipède

Théorème 34. L'aire $\mathcal{A}(v, w)$ du parallélogramme engendré par deux vecteurs $v, w \in \mathbb{R}^n$ est égale à

$$\mathcal{A}(v, w) = |\det(v, w)|$$

Corollaire 35. Soient $v_1, \ldots, v_n \in \mathbb{R}^n$. On note $\mathcal{V}(v_1, \ldots, v_n)$ le volume du parallélépipède rectangle engendré par v_1, \ldots, v_n (ie. l'ensemble $\{z \in \mathbb{R}^n \mid z = \sum_{i=1}^n \lambda_i v_i, \lambda_i \in [0,1]\}$). On a alors :

$$\mathcal{V}(v_1,\dots,v_n)=|\det(v_1,\dots,v_n)|$$

b. Suite de polygones

Théorème 36 (Suite de polygones). Soit P_0 un polygone dont les sommets sont $\{z_{0,1}, \ldots, z_{0,n}\}$. On définit la suite de polygones (P_k) par récurrence en disant que, pour tout $k \in \mathbb{N}^*$, les sommets de P_{k+1} sont les milieux des arêtes de P_k .

Alors la suite (P_k) converge vers l'isobarycentre de P_0 .

[**GRI**] p. 130

[**I-P**] p. 389

3. En algèbre linéaire

Définition 37. Soit $A \in \mathcal{M}_n(K)$. On appelle :

[**GOU21**] p. 171

- **Polynôme caractéristique** de A le polynôme $\chi_A = \det(A XI_n)$.
- **Polynôme minimal** de A l'unique polynôme unitaire π_A qui engendre l'idéal Ann $(A) = \{Q \in \mathbb{K}[X] \mid Q(A) = 0\}.$

p. 186

Proposition 38.

p. 172

 λ est valeur propre de $A \iff \chi_A(\lambda) = 0 \iff \pi_A(\lambda) = 0$

p. 185

Proposition 39. — A est trigonalisable si et seulement si χ_A est scindé sur \mathbb{K} .

— A est diagonalisable si et seulement si π_A est scindé à racines simples sur \mathbb{K} .

Remarque 40. Si $\mathbb{K} = \mathbb{F}_q$, A est diagonalisable si et seulement si $A^q = A$.

Théorème 41 (Cayley-Hamilton).

 $\pi_u \mid \chi_u$

4. À l'étude du groupe linéaire

Théorème 42. Soit $u \in \mathcal{L}(E)$. Les assertions suivantes sont équivalentes :

[**ROM21**] p. 140

- (i) $u \in GL(E)$.
- (ii) $Ker(u) = \{0\}.$
- (iii) Im(u) = E.
- (iv) $\operatorname{rang}(u) = n$.
- (v) $\det(u) = 0$.
- (vi) *u* transforme toute base de *E* en une base de *E*.
- (vii) Il existe $v \in \mathcal{L}(E)$ tel que $u \circ v = \mathrm{id}_E$.
- (viii) Il existe $w \in \mathcal{L}(E)$ tel que $w \circ u = \mathrm{id}_E$.

[**PER**] p. 95

Proposition 43. det : $GL(E) \to \mathbb{K}^*$ est un morphisme surjectif.

Soit *p* un nombre premier \geq 3. On se place sur le corps $\mathbb{K} = \mathbb{F}_p$.

[**I-P**] p. 203 **Définition 44.** Soit H un hyperplan de E et G un supplémentaire de H. On définit f la **dilatation** de base H, de direction G et de rapport $\lambda \in \mathbb{K}^*$ par

$$\forall x \in H, \forall y \in G, f(x + y) = x + \lambda y$$

Théorème 45. Si $|\mathbb{K}| \ge 3$, les dilatations engendre GL(E).

Notation 46. Soit $a \in \mathbb{F}_p$. On note $\left(\frac{a}{p}\right)$ le symbole de Legendre de a modulo p.

Lemme 47. $a \mapsto \left(\frac{a}{p}\right)$ est un morphisme de groupes.

Lemme 48. Il y a $\frac{p-1}{2}$ résidus quadratiques dans \mathbb{F}_p^* .

Théorème 49. Le groupe multiplicatif d'un corps fini est cyclique.

Théorème 50 (Frobenius-Zolotarev).

$$\forall u \in GL(E), \varepsilon(u) = \left(\frac{\det(u)}{p}\right)$$

où u est vu comme une permutation des éléments de E.

[**I-P**] p. 389

Annexes

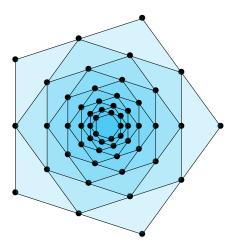


FIGURE 1 – La suite de polygones.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

Algèbre Linéaire [GRI]

Joseph Grifone. Algèbre Linéaire. 6e éd. Cépaduès, 9 jan. 2019.

https://www.cepadues.com/livres/algebre-lineaire-edition-9782364936737.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529.html.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.