Liste des développements

Caractérisation réelle de la fonction

On montre que la fonction d’Euler est la seule fonction log-convexe sur prenant la valeur en et vérifiant pour tout .

Connexité des valeurs d’adhérence d’une suite dans un compact

On montre que l’ensemble des valeurs d’adhérence d’une suite d’un espace métrique compact est connexe en raisonnant par l’absurde, puis on utilise ce résultat pour démontrer le lemme des grenouilles.

Contre-exemple au théorème de Dirichlet

On construit un contre-exemple au théorème de Dirichlet qui montre l’importance de l’hypothèse par morceaux.

Critère d’Eisenstein

Ici, nous démontrons le célèbre critère d’Eisenstein que l’on utilise énormément en pratique pour montrer qu’un polynôme est irréductible.

Décomposition de Dunford

On démontre l’existence et l’unicité de la décomposition de Dunford pour tout endomorphisme d’un espace vectoriel de dimension finie.

Décomposition polaire

On montre que toute matrice peut s’écrire de manière unique avec et , et que l’application est un homéomorphisme.

Densité des polynômes orthogonaux

On montre que la famille des polynômes orthogonaux associée à une fonction poids vérifiant certaines hypothèses forme une base hilbertienne de (où est un intervalle de ).

Dimension du commutant

Dans ce développement, on montre en se ramenant à la résolution d’un système d’équations linéaires homogène que la dimension du commutant d’une matrice est plus grande que celle de l’espace de départ. On applique ensuite ce résultat pour donner une condition nécessaire et suffisante qui permettant de calculer le commutant de cette matrice.

Dual de

Avec les propriétés hilbertiennes de couplées à certaines propriétés des espaces , on montre que le dual d’un espace est pour , dans le cas où et où l’espace est de mesure finie.

Équation de Sylvester

On montre que l’équation d’inconnue admet une unique solution pour tout et pour tout dont les valeurs propres sont de partie réelle strictement négative.

est surjective

Dans ce développement, on démontre que l’exponentielle de matrices est surjective en utilisant des théorèmes d’analyse.

est un homéomorphisme

Dans ce développement, on démontre que l’exponentielle de matrices induit un homéomorphisme de sur .

Extrema liés

Dans ce développement, on montre l’existence et l’unicité des multiplicateurs de Lagrange liant les différentielles de plusieurs fonctions sous certaines hypothèses.

Formes de Hankel

Le but de ce développement est de construire une forme quadratique permettant de dénombrer les racines réelles distinctes d’un polynôme en fonction de ses racines complexes.

Formule de Stirling

Dans ce développement un peu technique, nous démontrons la formule de Stirling à l’aide du théorème central limite et de la fonction d’Euler.

Formule sommatoire de Poisson

On démontre la formule sommatoire de Poisson en utilisant principalement la théorie des séries de Fourier.

Intégrale de Dirichlet

Il s’agit ici de calculer l’intégrale de Dirichlet en utilisant les théorèmes classiques d’intégration.

Invariants de similitude

Nous montrons l’existence et l’unicité des invariants de similitude d’un endomorphisme d’un espace de dimension finie en utilisant la dualité.

Lemme de Morse

En usant (certains diront plutôt en abusant) du théorème d’inversion locale, on montre le lemme de Morse et on l’applique à l’étude de la position d’une surface par rapport à son plan tangent.

Lemme des noyaux

On montre par récurrence le lemme des noyaux pour un endomorphisme d’un espace vectoriel de dimension finie, et on applique ce résultat pour obtenir un critère de diagonalisation.

Loi d’inertie de Sylvester

Le but de ce développement est de montrer la très connue loi d’inertie de Sylvester qui donne l’existence (et une forme d’unicité) de la décomposition d’une forme quadratique réelle en carrés de formes linéaires indépendantes.

Méthode de Newton

On démontre ici la méthode de Newton qui permet de trouver numériquement une approximation précise d’un zéro d’une fonction réelle d’une variable réelle.

Nombres de Bell

En utilisant les propriétés des séries entières, nous calculons le nombre de partitions de l’ensemble .

Projection sur un convexe fermé

On montre le théorème de projection sur un convexe fermé dans un espace de Hilbert réel en utilisant les suites de Cauchy et des propriétés du produit scalaire.

Simplicité de pour

On montre que est simple pour en montrant dans un premier temps le cas , puis en s’y ramenant.

Sous-groupes distingués et table des caractères

Dans ce développement, on montre que tout sous-groupe distingué d’un groupe fini s’écrit comme intersection de noyaux de caractères irréductibles. On utilise ensuite ce résultat pour donner un critère de simplicité.

Suite de polygones

Il s’agit ici d’étudier une suite de polygones à l’aide de déterminants classiques, et de montrer qu’elle converge vers l’isobarycentre du polygone de départ.

Théorème central limite

En établissant d’abord le théorème de Lévy, on démontre le théorème central limite, qui dit que si est une suite de variables aléatoires identiquement distribuées admettant un moment d’ordre , alors converge en loi vers .

Théorème d’Abel angulaire

On montre le théorème d’Abel angulaire, qui permet d’intervertir certaines sommes et limites, et on l’applique justement au calcul de deux sommes.

Théorème de Cauchy-Lipschitz linéaire

En construisant un raisonnement autour du théorème du point fixe de Banach, on montre le théorème de Cauchy-Lipschitz, qui garantit l’existence d’une solution répondant à une condition initiale et l’unicité d’une solution maximale.

Théorème de Cauchy-Lipschitz local

En construisant un raisonnement autour du théorème du point fixe de Banach, on montre le théorème de Cauchy-Lipschitz, qui garantit l’existence d’une solution répondant à une condition initiale et l’unicité d’une solution maximale.

Théorème de Dirichlet faible

En raisonnant par l’absurde et en utilisant certaines propriétés des polynômes cyclotomiques, on démontre que l’ensemble des premiers congrus à modulo un certain entier est infini.

Théorème de Fejér

Dans ce développement, on montre le théorème de Fejér, qui assure la convergence de la série de Fourier d’une fonction vers sa série de Fourier au sens de Cesàro.

Théorème de Frobenius-Zolotarev

Nous démontrons le théorème de Frobenius-Zolotarev qui permet de calculer la signature d’un endomorphisme d’un espace vectoriel sur un corps fini possédant au moins éléments.

Théorème de Kronecker

En utilisant les polynômes symétriques, nous montrons ici que toutes les racines d’un polynôme unitaire à coefficients entiers dont les racines sont dans , sont en fait des racines de l’unité.

Théorème de Maschke

Dans ce développement, nous montrons le théorème de Maschke qui dit que toute représentation linéaire de degré non-nul est somme directe d’un nombre fini de représentations linéaires irréductibles.

Théorème de Wedderburn

En utilisant les polynômes cyclotomiques, nous montrons que tout corps fini est commutatif.

Théorème de Weierstrass (par la convolution)

On montre le théorème de Weierstrass par la convolution (sans forcément développer toute la théorie derrière, ce qui peut être utile dans certaines leçons).

Théorème de Weierstrass (par les probabilités)

On montre le théorème de Weierstrass en faisant un raisonnement sur des variables aléatoires suivant une loi de Bernoulli.

Théorème des deux carrés de Fermat

Nous démontrons le théorème des deux carrés de Fermat (qui donne des conditions sur la décomposition en facteurs premiers d’un entier pour que celui-ci soit somme de deux carrés) à l’aide de l’anneau des entiers de Gauss .

Transformée de Fourier d’une gaussienne

On calcule la transformée de Fourier d’une fonction de type gaussienne à l’aide du théorème intégral de Cauchy.